Parallel plug-in for 3D reconstruction of medical images

Abstract

In this paper we present our new parallel plug-in for creating virtual models of human organs and other parts of a human
body. The plug-in is incorporated into Blender environment and Python scripts are used for its basic functionality . For
more demanding operations parallel implementation in C++ language with hybrid technique combining OpenMP and
MPI is used. The implementation can exploit computational power of both non-accelerated as well as Intel Xeon Phi
accelerated compute nodes of a cluster. In this paper we describe the plug-in construction and its basic functionality.

The figures illustrate the process of the 3D model reconstruction of a mandible.

Keywords:

Medical imaging, Blender plug-in, Surface Reconstruction, Metaballs, Python, Intel Xeon Phi

1 1. Introduction

2 The rapid development of medical imaging and image
3 processing methods leads to the development of the tech-
4 niques that can be used to create virtual models of human
s body. The models of human organs are now widely re-
6 quired by doctors for diagnostic purposes and planning
7 of patient treatments. For surgeons such models can be
s of high importance when very complicated surgical opera-
o tions are planned.

10 In this paper parallel tool for processing of medical im-
11 ages is presented. This tool was developed to create 3D
12 virtual model of human organs from CT (Computed To-
13 mography) and MRI (Magnetic Resonance Imaging) scans.
12 It exploits advanced techniques for model reconstruction,

3s 2. Internal plug-in

39 Our plug-in is based on the Blender version 2.75. To
10 compile it the latest Intel library 2016.01 (MPI compiler)
41 is used in combination with GCC version 4.9.3.

12 Using Intel compiler gives us the possibility to take
13 all advantages of the Intel libraries such as vectorization,
44 compilation for the Intel Xeon Phi coprocessor (MIC) and
15 the exploitation of the latest standard of OpenMP and
16 MPI for parallelization. It also allows distribution of cal-
a7 culations not only across the nodes, but also to the MIC
48 COPTOCESSOTS.

49 Our plug-in is made as a Blender module which is cre-
so ated and registered in the following manner:

51 static PyObject *poissonReconstruction_func

15 parallel implementation techniques of more demanding meths: (Pyobject * /*self*/, PyObject xargs)

16 ods running on the supercomputer, and processing and
17 rendering of results in the real time.

18 In our development an open-source software Blender is
19 used. Tool presented in this paper is created as a new in-
20 ternal plug-in of Blender. GUI and basic behaviour of the
21 plug-in are implemented in the Python scripting language.
22 More demanding tools are implemented in C++ using li-
23 braries and directives for parallel programming like MPI
22 and OpenMP. The control menu, which has a workflow
25 structure, is placed in Blender’s UV /Image Editor. Using
26 this menu a required 3D model can be created in a few easy
27 steps (loading of data, denoising, segmentation, boundary
28 extraction and model reconstruction). The support for
20 auxiliary calculations is performed by our new application
30 called Blender-client.

31 In Section 2 we describe the creation and control of
32 the internal plug-in and its component Blender-client. In
a3 Section 3 the workflow of the 3D model reconstruction
sa and its basic components is outlined. In the final section,
35 methods for surface reconstruction by the Metaballs and
36 Poisson surface reconstruction method are depicted and
a7 their advantages and disadvantages are illustrated.

Preprint submitted to Computers & Graphics

53 {

55 if (!PyArg_ParseTuple(args, "00ff", &pyBoundary,
56 &pyBoundaryVector, ...))

57 {

58 return NULL;

61 PyObject* vertices = PyList_New(vs.size());
62 PyObject* faces = PyList_New(fs.size());

64 return Py_BuildValue("00", vertices, faces);

67 static PyMethodDef methods[] =

68 {

69 “en

70 { "poissonReconstruction",

71 (PyCFunction)poissonReconstruction_func, METH_VARARGS, "" },
72 N

73 }

74

75 static struct PyModuleDef module =

76 {

77 PyModuleDef HEAD_INIT,

78 "_xxx_dicom",

79 ...

80 methods,

81

82 }

83

84 static PyObject *XXX_initPython(void)

85 {

86 PyObject *mod = PyModule_Create (&module) ;
87 return (void*)mod;

88 }

89

90 static struct _inittab bpy_internal_modules[] =

February 20, 2017

128
129
130
131
132
133
134
135
136
137
138

@3 HE pefault |H[e3
Time:00:00.31 | Mem:14.69M, Peak:14.69M | Done | Path Traci

B scere ER

Blender

All Scenes

Blender User Preferences

Interface Editing Input

(it

—
2

(1) Lamp

Themes System

Spot Hemi Area

Figure 1: Blender environment with our plug-in

{ "_xxx_dicom", XXX_initPython },

H

Then it is enough to create Python script ”__init__.py”
and save it to directory "blender/2.75 /scripts/addons/xxx”.
Example of such file could look like this:

bl_info
"name": "XXX Medical toolset",
"category": "UV",
"author": ",
"version": (1,0,0),
"description": "XXX Medical toolset"

{

import bpy, _xxx_dicom

Draw the panel for poisson method
class UIPoisson(Panel):
bl_idname ’Poisson_panel_11’
bl_category = "XXX Medical"
bl_space_type >IMAGE_EDITOR’
bl_region_type ’TOOLS’
bl_label "Perform poisson reconstruction"

def draw(self, context):
layout = self.layout
scn = bpy.context.scene

= layout.row()
.prop(context.scene, "poisson_depth", slider=False)
.prop(context.scene, "poisson_smooth", slider=False)

= layout.row()
.operator("custom.poisson_rec", icon="0BJECT_DATAMODE",
text="Make poisson reconstruction")

Select Make poisson reconstruction button
class UIPoisson_rec(bpy.types.0Operator):
bl_idname "custom.poisson_rec"
bl_label "Poisson rec"
bl_description "Create poisson reconstruction from data"

def execute(self, context):
(verts, faces) =
_XXX_dicom.poissonReconstruction(boundary,
boundaryVector,

139 # Create mesh and object

140 createMesh(verts, faces)

141

142 return {"FINISHED"}

143 Graphical elements were created by above mentioned

144 script directly in Blender environment as it is depicted in
Figure 1.

145

146 2.1. Blender client

For faster execution of most time consuming algorithms,
148 we have created a client system, which performs the most
149 demanding tasks such as Marching Cubes method. The
150 basic principle of the client system is shown in Figure 2.
151 The Blender plug-in is used in Offload mode for computa-
152 tion on MIC. The client itself works in symmetric mode. In
153 this mode MPI programs are executed on both host com-
154 puter (CPU) and MIC accelerator. Series of such clients
155 working in symmetric mode can be established. Work di-
156 vision and collection of results is maintained using MPI.
Since MIC has a different architecture and requires dif-
158 ferent binary file produced by the Intel compiler, two dif-
150 ferent files have to be compiled before MPI program is
160 executed.

147

157

161 3. Basic elements of the plug-in

The plug-in contains user friendly menu which has a
workflow structure. It is placed in the UV /Image Editor,
164 see Figure 1. By this menu a required 3D model can be
created in a few easy steps:

162

163

165

CPU MICO MIC1
Blender client || Blender client || Blender client
Node 0
"""""""""""""""""""""""" OpenMP OpenMP OpenMP
Blender | {—T1T—/—— — T — T .
|cpu MICO||MIC1 . MPI
. OpenMP+Offload """""""""""" — L —
__ : Blender client || Blender client || Blender client
OpenMP OpenMP OpenMP
______________ CPumwco o MICL
Node n

Figure 3: Loaded data

loading data from DICOM format (GDCM libraries
are used),

application of a filter to reduce image noise: e.g.,
Gaussian blur, BM3D filter, anisotropic filter,

166]..
167

168 2.

tering),
boundary extraction, computation of normals,

171

172 4
173 5

174

3D model reconstruction (e.g., Metaballs and Pois-
son surface reconstruction method),
visualization

176 3.1. Input data

177
178 image data stored in the DICOM format, see Figure 3. DI-
179 COM (Digital Imaging and Communications in Medicine)
180 is a standard for storing, displaying and distributing med-
181 ical data obtained from CT, MRI or ultrasound. For load-
182 ing DICOM file we have integrated the library Grassroots
183 DICOM (GDCM) directly into Blender. GDCM is a C++
184 library for DICOM medical files.

185 The data from CT are stored as a images, usually as

After the data loading, volume of data could be re-
101 stricted to selected area of interest, see Figure 4, by pro-
192 viding tools such as box cutting tool or sphere cutting tool.

190

image segmentation (e.g., thresholding, K-means clus-193 3.2. Image denoising

In present version of the plug-in, three different types of
195 image filters are used for denoising. The Gaussian smooth-
106 ing filter [1], anisotropic diffusion filter [2] and BM3D fil-
107 ter [3]. The results after denoising images by Gaussian
198 smoothing are shown in Figure 4.

194

199 3.3. Image segmentation

200 After images are pre-processed by denoising, image

In the first step of the process we have to obtain the 201 segmentation is performed. The segmentation simplifies

202 Tepresentation of the image so localization of objects and
203 boundaries in the image can be created. We are using two
204 segmentation methods. Simple image thresholding [1] and
205 k-means clustering [4]. They can be used separately or
206 combined together.

207 3.3.1. Thresholding
The thresholding method is used to transform the orig-

208

186 axial slices at mutual axial distance. The distance between 200 inal image to the reduced version of the image by eliminat-

187 two axial slices is mostly in range between 0.6 and 5.0

210 ing selected pixel intensity values [1]. Specifically values

188 mm. For better accuracy of final model smaller values are 211 grater than T, and lower that T,,;,. The values between

189 preferred.

212 Typin and T4, Temain unchanged.

3

Gauss

< Blur Width: 3>
m S

T ST

Figure 5: Thresholding

We can apply this segmentation technique repeatedly
214 on the original images with different settings and then
215 merge the results to provide advanced version of the thresh-
216 0lding method.

213

217 3.3.2. K-means clustering

K-means clustering is method originated in signal pro-
210 cessing and is often used in data mining [4]. Generally this
220 method can be employed in different areas including im-
221 age processing as an image segmentation technique. This
222 method divides pixels into k clusters according to some
223 similar features like an intensity of a pixel and distance of
224 the pixel intensity from a centroid pixel intensity.

The parallelization of this method by using Intel Xeon
226 Phi was introduced in the paper [5].

218

225

227 3.4. Finding connected segments, boundary extraction and

228 computation of normals

229 The subsequent task after image segmentation is find-
230 ing only the connected areas of selected segment and ex-
231 traction of its boundary, see Figure 6 and Figure 7. Bound-
232 ary of the segment is represented by a set of pixels obtained
233 by the flood algorithm. This boundary is used for 3D re-
234 construction using both methods, Poisson reconstruction
235 and Metaballs. For application of Poisson method, com-
236 putation of the normal vector n; = (n,, ny, n;) in each point
237 of the boundary is also necessary. The enumeration of the
238 normal vector is depicted in Figure 8.

239 3.5. Surface reconstruction by Poisson method

240 As mentioned in previous subsection we are using Pois-
241 son method as a technique for reconstruction of the 3D
242 surface. Original name is Screened Poisson Surface Recon-
243 struction [6, 7]. Advantage of this method is that it is not
244 Sensitive to noise, because it uses the whole set of points

245 at once. The basic procedure consists of three steps: com-
246 putation of gradient Vy,,, computation of indicator func-
247 tion yy and extraction of iso-surface M (using Marching
24s Cubes method). The gradient is computed from normals
210 V that serve as an input to the method.

We need to formulate and solve the Poisson problem.
251 After supplying a set of vectors V we need to find a func-
252 tion j using the equation Vy = V. Since the set V is not
253 integrable, we use an operator of divergence and a least
254 squares method for formulating Poisson equation

250

255 Ay =V-V. (1)

256 After discretization we get

N

7 x(p) = Z x;Bi(p),

i=1

(2)

2

@

where B; : R? = R is a Bspline basis function.

To find the coefficients x; we have to solve a system of
260 linear equations A;;x; = b; (A is a sparse symmetric matrix)
261 where

258

259

Aij = [(VBi(q). VBj(q))dq

M

bi = [(VBi(9), V(g)) dg ¥
M

262

263 In our solution we are using original implementation
264 from the authors of the method. This version is already
265 optimized and parallelized. The resulting 3D model com-

266 ing from the Poisson reconstruction is shown in Figure 9.

267 3.6. Metaballs method

The development of a technology for creating realis-
260 tic and visually interesting images of three-dimensional
270 shapes goes back to 80’s of the 20th century [8]. The

268

4

Figure 6: K-means clustering

Figure 7: Boundary extraction

271 method is based on the construction of the iso-surfaces.
272 For each voxel with coordinates (x,y,z) the value of the
273 potential function

N

g(x,y,2) = Z

i=1

for fi(x,y,2) <1,
other,

(4)

274

fi(x,y,2)
0

275 is computed. In the previous formula N is a total number
276 of the metaballs and f;(x,y, z) represents a function of the
277 i-th metaball. In our implementation ellipsoidal metaballs
278 with f; in the form

-2
(r9)?

(x— 20’

-
(rx)2 + +

(r)?

fix,y,2) = (5)

280 are used. rl",rly .17 > 0 determine the length of the semi-
2s1 axes and (xY,)?,2V) are coordinates of the centre of the i-th
282 metaball. The choice of the ellipsoids is rational, since the
283 distance between two neighbouring slices of CT is much
284 bigger then the size of the pixels in one image.

The metaballs were originally introduced for a visual-
286 ization of the objects without necessity of the surface mesh
287 generation. This save both the computational time and
2ss the memory requirements, since such meshes could have
280 several millions of triangles. However, our plug-in should
200 have a possibility to generate high quality polygonal mesh
201 for post-processing purposes such as generation of the STL
202 file for a 3D print of the model.

285

293 To create a polygonal mesh from voxels the Marching
204 Cubes method is used [9]. This method passes through the
205 input scalar field and from the eight neighbouring points
296 simultaneously (imaginary cube) computes the polygons
207 which represents a corresponding part of the iso-surface.
208 This method is time demanding and so the efficient parallel
200 implementation is necessary. The results are depicted in
300 Figure 9.

301 3.7. Visualization

302 For visualization, Blender Cycles engine is used, see
303 Figure 9. Although the GPU acceleration is already im-
304 plemented in Cycles, its functionality is limited. To accel-
305 erate it, we use Intel Many Integrated Core architecture

306 (MIC) .

307 4. Drawbacks in using Poisson reconstruction and possible

308 solution

In terms of surface reconstruction quality, there is a
310 significant drawback hidden in the principle of the Poisson
ann method. The method provides satisfactory results, when
312 reconstructing surfaces of thick objects, see Figure 10. In
313 specific medical data, we are dealing with objects with
314 walls as thin as 1 pixel. It is for example reconstruction of
315 very thin bones, e.g. bones which create the orbital floor.
316 In such cases the method can not resolve the enveloping

309

5

Figure 8: The enumeration of the normal n; = (ny, ny, n;) from 26X vectors v; in selected point of the boundary (left) and the result in all points

of the boundary (right).

Figure 9: Comparison Poisson method (left) with Metaballs (right)

a17 surface correctly and provides misleading or totally incor-
rect results. For this reason different approach capable to
overcome such problem have been searched and found in

application of Metaballs.

3

e

8
319

3

)

[¢]

5. Comparison of Poisson reconstruction and Metaballs
method

321

322

323 We provide qualitative comparison of Poisson and Meta-
324 balls method on two examples. First example is illustra-
325 tive and describes the problem of the Poisson method while
a26 reconstructing the thin wall, see Figure 10. Effective so-
327 lution to this problem is shown by Metaballs method also
in Figure 10. Second example provides possible detailed

reconstruction of mandible by both methods, see Figure 9.

328

329

330 6. Conclusion

331 In the paper we have introduced plug-in for Blender
332
333 image processing and 3D reconstruction of selected ob-
334 jects. Metaballs method has been presented as a suitable
solution for 3D reconstruction of problematic parts of hu-
man body.
son of the previously used Poisson method and Metaballs
method. We have also shown possible advantages of Meta-
balls method over Poisson method. Due to high compu-
s10 tational demands of selected methods extension to utiliza-

a1 tion of HPC resources is also effectively solved within the

335

336

337

338

339

software. Plug-in is using powerful methods for medical 2

. . 3
As a show case we have provided compari-

a2 plug-in. User have several options. Use multi-core option,
a3 one node solution for the calculations or extend his work
344 by using our Blender-client to large number of computing
aas nodes with plenty of processing cores including Xeon Phi
346 accelerators.

347 7. Future work

348 Our goal is to prepare an application, which can create

319 & 3D model in real-time. To accelerate all used methods
350 necessary to complete this task we develop the parallel
351 version of the code.

352 References

353 [1] Sonka, M., Hlavac, V., Boyle, R.: Image Processing, Analysis
and Machine Vision. Thomson, (2006)
[2] Perona, P., Malik, J.: Scale-space and Edge Detection Using
Anisotropic Diffusion. In: IEEE Trans. on Pattern Analysis and
Machine Intelligence, vol. 12, no. 7, pp. 629-639. (1990)
Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.: Image
Denoising by Sparse 3D Transform-Domain Collaborative Fil-
tering. In: IEEE Trans. Image Process., vol. 16, no. 8, pp.
20802095, (2007).
MacQueen, J. B. (1967). Some Methods for classification
and Analysis of Multivariate Observations. Proceedings of 5th
Berkeley Symposium on Mathematical Statistics and Probabil-
ity. University of California Press. pp. 281297
P. Strakos, M. Jaros, T. Karasek, L. Riha, M. Jarosova, T.
Kozubek, P. Vavra, T. Jonszta, Parallelization of the Im-
age Segmentation Algorithm for Intel Xeon Phi with Applica-
tion in Medical Imaging, in P. Ivnyi, B.H.V. Topping, (Edi-
tors), Proceedings of the Fourth International Conference on

354
355
356

(3]

371

373
374
375
376
377
378
379
380
381
382
383
384

386
387
388
389
390
391

Figure 10: The reconstruction of thin surface: the segmented area (left), the reconstruction by poisson (middle), the reconstruction by
metaballs

(10]

Parallel, Distributed, Grid and Cloud Computing for Engi-
neering, Civil-Comp Press, Stirlingshire, UK, Paper 7, 2015.
doi:10.4203/ccp.107.7.

Michael Kazhdan, Matthew Bolitho, Hugues Hoppe. Poisson
surface reconstruction, Symposium on Geometry Processing
2006, 61-70.

Michael Kazhdan, Hugues Hoppe. Screened Poisson surface re-
construction, ACM Trans. Graphics, 32(3), 2013. (Presented at
SIGGRAPH 2013.)

James F. Blinn. 1982. A Generalization of Algebraic Sur-
face Drawing. ACM Trans. Graph. 1, 3 (July 1982), 235-256.
DOI=http://dx.doi.org/10.1145/357306.357310

Lorensen W. E., Cline H. E., Marching Cubes: A high resolution
3D surface construction algorithm. Computer Graphics, Vol. 21,
Nr. 4, July 1987.

M. Jaros, L. Riha, T. Karasek, P. Strakos, A. Vasatova, M.
Jarosova, T. Kozubek, Acceleration of Blender Cycles Path-
Tracing Engine using Intel Many Integrated Core Architecture,
Proceedings of the 14th International Conference on Computer
Information Systems and Industrial Management Applications,
Warsaw, Poland, 2015.

